a2 United States Patent

Pieczul et al.

US009462068B2

US 9,462,068 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) CROSS-DOMAIN INACTIVITY TRACKING
FOR INTEGRATED WEB APPLICATIONS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

Inventors:

Olgierd Stanislaw Pieczul, Dublin

(IE); Brent Allan Hepburn, Boston,

MA (US); David Scott Kern, Billerica,
MA (US); Mark McGloin, Dublin (IE);
Mark Lawrence Rovelli, Concord, MA
us)

Assignee:

Corporation, Armonk, NY (US)

Notice:

International Business Machines

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U
Appl. No.:
Filed:

US 2015/0081876 Al

Int. CL.
GO6F 15/173
HO4L 29/08
GO6F 11/36
U.S. CL
CPC

.S.C. 154(b) by 415 days.
14/028,214
Sep. 16, 2013

Prior Publication Data

Mar. 19, 2015

(2006.01)
(2006.01)
(2006.01)

.. HO4L 67/22 (2013.01); GOGF 11/36
(2013.01)

Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8,131,861 B2
8,200,816 B2
8,813,174 B1*

9,201,759 B2* 12/2015

2010/0043065 Al*

3/2012 Butler et al.
6/2012 Izrailevsky et al.
8/2014 Koeten HO4L 41/022
709/223
Wintergerst GOGF 11/362
2/2010 Bray HO4L 63/0815
726/8

2012/0167118 Al1* 6/2012 Pingilicceee GOG6F 1/3206
719/318

2013/0024922 Al 1/2013 Rodriguez
2013/0254847 Al* 9/2013 Adams GO6F 21/6218
726/4
2013/0298037 Al* 11/2013 Matthews, III GOG6F 3/0484
715/753
2013/0303143 Al* 112013 Schrader HO04M 1/72577
455/418
2014/0142984 Al* 5/2014 Wright GO6F 19/321
705/3
2014/0282877 Al* 9/2014 Mahaffey HO4L 63/0853
726/3
2014/0325061 Al* 10/2014 Morgan HO4L 12/00
709/224
2015/0007263 Al* 1/2015 Stewart HO4L 63/0815
726/3
2015/0033205 Al* 1/2015 Wintergerst GOG6F 11/362
717/124
2015/0172150 Al* 6/2015 Dingccoovvvvinnnene HO4L 67/42
709/203

* cited by examiner

Primary Examiner — Viet Vu

Assistant Examiner — James Edwards
(74) Attorney, Agent, or Firm — David B.
Woycechowsky; David H. Judson

(57) ABSTRACT

In a cloud computing environment, a user authenticates to
multiple cloud services concurrently. A master service has
knowledge of or tracks the cloud service(s) to which a user
is authenticated. Each cloud service may enforce its own
inactivity period, and the inactivity period of at least first and
second cloud services may be distinct from one another.
When the master service receives an indication that the
authenticated user is attempting to take an action at a first
cloud service despite an activity timeout there, the master
service issues a status request to at least the second cloud
service to determine whether the user is still active at the
second cloud service (despite its different inactivity period).
If the user is still active at the second cloud service, the
master service provides a response, selectively overriding
(re-setting) the activity timeout at the first cloud service to
permit the action.

18 Claims, 5 Drawing Sheets

SOFTWARE VIRTUAL
MAPPING AND DEVELOPMENT CLASSROOM
NAVIGATION AND LIFECYCLE EDUCATION
MANAGEMENT DELIVERY

ANALYTICS

/ / PROCESSING

DATA

WORKLOADS

RESOURCE
FRQVISIDNING

METERING
AND FRICING

SERVICE LEVEL
MANAGEMENT

T

//USERPQRTAL //
MANAGEMENT

VIRTUAL
SERVERS VIRTUAL

STURAGE

B

VIRTUAL
NETWORKS

VIRTUALIZATION

TRANSACTION CROSS-DOMAIN 306
PROCESSING TRACKING
VIRTUAL

304
SLAPLANNING
AND FULFILLMENT
APPLICATIONS

302

il

18M®

/MANFRAMES SER\IERS

1BM®
XSERES ®
svs'rsms

@@@j@

NETWORKING NETWORK
APPLICATION
SERVER DATABASE

FTWARE SDFI'WARE
% 300

HARDWARE AND SOFTWARE

U.S. Patent Oct. 4, 2016

IR

104

==
=
—= =

SERVER

Sheet 1 of 5

US 9,462,068 B2

%
106{/[;E_jﬁ} 1000
1ont
SERVER
2
FIG. 2 l/oo
[T === ————————————— — —— ==
| PERSISTENT |
| PROCESSOR UNIT MEMORY STORAGE |
' / N N '
202
: 204 @ 0\ @ 208 @ 208 :
I<: :>I
L 210 212 @ 214 |
I \ / / I
| COMMUNICATIONS INPUT/QUTPUT |
| UNIT UNIT DISPLAY |
.. — —— — _ J

216

COMPUTER
READABLE
MEDIA

PROGRAM
CODE

220

US 9,462,068 B2

Sheet 2 of 5

Oct. 4, 2016

U.S. Patent

¢ ‘DIA FUYMLIOS NV SHYMAHVH
- N X WWJD mws%

SNOILYOIddY SYYOMLIN YNLHIA
WNLYIA WNLNIA
INIWIDYNYW
INIWTI4TNS ONY INIWIOVNYI VLNOd ¥ISN ONIDINA ANY ONINOISIAOY
ONINNYTd V1S 13A31 30IANIS ONIYILIN J0NNOSTY
¥0¢
SOVOTHHOM
ANIAT3A M
ONIMOVAL ONISSIOONd owzo_‘_a,ww_wwan_ NOLLYONG3 T10A034IT ANV NOILLVOIAYN
NIVINOG-SSOM0/ | NOILOVSNvL ot WOOMSSYTD INGWdOT3A3A/ | ONV ONIddYI
90¢ WNLHIA JUVMLIOS

JHYMLIOS THYMLIOS @ S3IHISX

ISvavivad H3IAYIS JOVHOLS @hal
NOILVOITddV SWILSAS SHIANYIS STFWVHANIVIN

MHOMLIN ONDIHOMLAN @ Y¥3INI03ave TUNLOILIHOYY
@ Wl o8y

NOILYZITYNLYHIA

Il Il
0= /PC &0 —
SINIMO TYNLHIA AOVHO0LS _|I_

US 9,462,068 B2

Sheet 3 of 5

Oct. 4, 2016

U.S. Patent

S310d
H3aIAOYd

NIVWOQ LNFWIOVNYA - (181SSI00V) ¥3AIN0Yd
ozt |INanaovNww| | wanuas | -vZr| NovzmOHLNY || SNOWONNS | -0Z¢| Widod
E= AQI0d NV LNIWZOVNVI | | LNFWIOVNYI INTWIDYNVIN
pEnas | [ALknoas|zzp /] ssaooval ssoiss8 |gLp~/| 33A0TNT | [
_ _ _ _ _ |
8¢y
E NVIA INGW3OVNYIN (| oty
< =
iy MHOMLIN ¥3LINIOVLYA TYOISAHd L~ vOY

oLp \A NYIA 3OVHOLS INTWIOVYNYIN YHOMLIN o|

|A NVTA INTWIOVNYIN HOSIANIAAH o/ 907

3svavivd
/AY0LSY1va

Nt synos

(el o]

==

cly 2 oLy

]

L | 8

a:

coo

QO
/q-
000

-/
]

ﬁ_ Nt s3oNvIddv

N'b s30NVITddY
YHOMLIN

FEWA _

Nyiovd yanuas

53104
H3GROSANS

WAH g
\ o
aor o

Wi j
byiovd yaAuaS

GOv NIYWOQ LNIWIDVNYIW 308N0STY A3ZITVNLYIA - (3791SSI00V) ¥38I0Sans

(37dWVX3) STOUNOSTY LI GFHYHS 40 ¥ILNIOVLIYA SHIAIAOY

v "DI4

US 9,462,068 B2

Sheet 4 of 5

Oct. 4, 2016

U.S. Patent

¢ DIA

s a%0G Ep0c

¥IOVYL |- 9Z0S
ALINLLOVNI

301A43S dNO10

¥INOVYL | - 820G
ALINLLOVNI

301AH¥3S dNO10

UZ0G~] dOVuL
ALIALLOVNI

J0IAY3S ANO10

oo0o

¢SNLYLS LNTHHND
f N\
SILYOILNIHLNY
¥3SN HOIHM OL
(e)3ouasanoto [LNIWSOYNVA ANV
00— Joswdinaa || ONPRVELALALOYNI N gq
ONNVINWA || 30ANaS ¥aLsvA
TMOLS VLVA
\ J

U.S. Patent Oct. 4, 2016 Sheet 5 of 5 US 9,462,068 B2

USER MASTER CLOUD CLOUD
SERVICE SERVICE A SERVICE B

1. ACCESS (TIME = 0)

e
-

— AUTHENTICATE

REDIRECT NEW
- SESSION

AUTHENTICATE
TOKEN

1a. RESPONSE + SESSION

[

2. ACCESS (TIME = 0)

\d

 AUTHENTICATE REDIRECT NEW
B | SESSION

AUTHENTICATE TOKEN

Y

2a. RESPONSE + SESSION

A

3. ACCESS (TIME = 10)

3a. RESPONSE

4. ACCESS (TIME = 20)

Y

4a. INACTIVITY CHECK

4b. INACTIVITY
CHECK INACTIVITY

> CHECK

4c. ACTIVITY RESPONSE (TRUE)

4d. RESPONSE

FIG. 6

US 9,462,068 B2

1

CROSS-DOMAIN INACTIVITY TRACKING
FOR INTEGRATED WEB APPLICATIONS

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates generally to securing information
in a cloud computing or other shared deployment environ-
ment wherein disparate parties share Information Technol-
ogy (IT) resources.

2. Background of the Related Art

One commonly overlooked component of a traditional
computing user experience is based around activity and
inactivity. As is well-known, desktop computers dim screens
and spin down hard drives to save power, many devices
activate password-protected screensavers to prevent passers-
by from exploiting an empty desk, and many servers will
automatically log out a client that has remained idle for too
long. This sort of behavior is generally expected and toler-
ated by end users, and is often mandated as well by many IT
security administrators.

Moving away from the desktop and onto the network,
many reverse proxies and gateways also are capable of
enforcing inactivity timeouts across all traffic crossing their
boundaries. These inactivity monitoring techniques are use-
ful, but they require all of a single user’s traffic to flow
through a single (logical) device or closely-coupled devices
sharing memory state or low-latency network connectivity.
Unfortunately, these types of assumptions do not scale
naturally into a widely distributed cloud computing envi-
ronment. As is well-known, cloud computing is an emerging
information technology (IT) delivery model by which shared
resources, software and information are provided over the
Internet to computers and other devices on-demand. A cloud
compute environment, such as IBM SmartCloud® for Social
Business (formerly known as LotusLive®), presents to the
user as a single unified experience; in operation, the end user
logs-in once against a centralized authentication component,
and then transparently signs-on (e.g., via SAML (Security
Assertion Markup Language)-based authentication and
authorization techniques) into different components of the
service. The different components may run on different
subdomains in different physical cages in different data
centers in different parts of the world, all running on
different hardware with different proxy/gateway/session
management capabilities and different back-end technolo-
gies. Single clicks on a common “banner bar” can transpar-
ently redirect a user between different services without need
for separate login, as well as log the user out of all of the
components to which he or she has authenticated during that
session. In these types of environments, users do not nec-
essarily know (or indeed care) where the back-end servers
they are contacting live, because the entire service is being
presented to them as a single unified whole. Thus, a user
who is actively reading his or her e-mail in one web-based
application, for example, would not expect to be logged out
of a service being provided by another application to which
he or she has been authenticated to during the session.

In a cloud compute environment of this type, it would not
be expected that user traffic against a server component
hosted, e.g., in a California data center, will not traverse the
front-end web proxy used, for example, by a cloud business
support service component located elsewhere. Likewise,
user traffic against SmartCloud® Notes will never be seen
by a reverse proxy for a web-based collaboration tool, such
as SmartCloud® Connections. These types of cross-domain
operations thus make it extremely difficult to track user

10

35

40

45

50

55

2

activity or inactivity, especially since it may be very likely
that a user will become “inactive” with respect to one service
while still actively engaged in another service to which he or
has been authenticated.

Cross-domain inactivity tracking for web applications
that have been integrated in this manner across a cloud
compute infrastructure thus presents significant technical
challenges. Of course, client-side inactivity monitoring is
well-developed in the prior art, as noted above. For example,
browser-based cookie scoping and cross-site scripting (XSS)
security controls prevent the user’s browser from being
trivially used to track the user’s activity or inactivity state.
That said, trusting client-side code to control service-based
security, especially across a widely-distributed cloud com-
pute infrastructure, is not an acceptable solution.

Server-side inactivity tracking solutions are also known.
Thus, it is known to track inactivity across a set of services
linked by common authentication, e.g., using a network
authentication server that tracks a common network cookie.
On every request, the cookie is updated to maintain a latest
activity time. Generally, this approach provides an accept-
able solution, but it entails a significant performance over-
head due to the need to update the cookie so frequently.
Another approach enables an administrator to view display
of active sessions, thereby providing an indirect view of
inactivity. This approach, however, does not operate in the
context of a set of linked services. Finally, it is known in the
SAML 2.0 specification to provide a means to specify an
inactivity period for each service authenticating to a master
authentication service.

These approaches are not scalable and have other ineffi-
ciencies. Therefore, there remains a new to provide a new
approach to inactivity tracking that can be implemented
across disparate compute stacks, such as those implemented
by different teams on different technologies, and as may be
expected to continue to grow as services of this type grow
and incorporates new functionality and new products.

BRIEF SUMMARY

According to this disclosure, cross-domain inactivity
tracking and management are provided in a cloud computing
environment. In this environment, it is assumed that a user
has authenticates to multiple cloud services. Each cloud
service may enforce its own inactivity period (e.g., a tim-
eout), and the inactivity period of at least first and second
cloud services may be distinct from one another. A master
service has knowledge of or tracks the cloud service(s) to
which a user is authenticated. In operation, when the master
service receives an indication that the authenticated user is
attempting to take an action at a first cloud service despite
an activity timeout there, the master service issues a status
request to at least the second cloud service to determine
whether the user is still active at the second cloud service
(despite its different inactivity period). If the user is still
active at the second cloud service, the master service pro-
vides a response back to the first cloud service, selectively
overriding (re-setting) the activity timeout at the first cloud
service to permit the action to take place. Thus, in this
approach inactivity is only checked (by the master service)
on an on-needed basis, which enables the solution to scale
for use by many cloud services simultaneously without
impacting performance.

The foregoing has outlined some of the more pertinent
features of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can

US 9,462,068 B2

3

be attained by applying the disclosed invention in a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 depicts an exemplary block diagram of a distrib-
uted data processing environment in which exemplary
aspects of the illustrative embodiments may be imple-
mented;

FIG. 2 is an exemplary block diagram of a data processing
system in which exemplary aspects of the illustrative
embodiments may be implemented;

FIG. 3 illustrates an exemplary cloud computing archi-
tecture in which the disclosed subject matter may be imple-
mented;

FIG. 4 illustrates an exemplary datacenter in which the
cross-domain inactivity tracking protocol of this disclosure
may be implemented;

FIG. 5 illustrates a cross-domain inactivity monitoring
system according to this disclosure; and

FIG. 6 illustrates a representative use case illustrating
how the cross-domain inactivity tracking protocol of this
disclosure operates.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with
reference to FIGS. 1-2, exemplary diagrams of data pro-
cessing environments are provided in which illustrative
embodiments of the disclosure may be implemented. It
should be appreciated that FIGS. 1-2 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
disclosed subject matter may be implemented. Many modi-
fications to the depicted environments may be made without
departing from the spirit and scope of the subject matter.
Client-Server Technologies

With reference now to the drawings, FIG. 1 depicts a
pictorial representation of an exemplary distributed data
processing system in which aspects of the illustrative
embodiments may be implemented. Distributed data pro-
cessing system 100 may include a network of computers in
which aspects of the illustrative embodiments may be imple-
mented. The distributed data processing system 100 contains
at least one network 102, which is the medium used to
provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the
like. In the depicted example, server 104 provides data, such
as boot files, operating system images, and applications to
the clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

10

15

20

25

30

35

40

45

50

55

60

65

4

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the disclosed subject matter, and therefore, the particular
elements shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an
exemplary data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for illustrative
embodiments of the disclosure may be located.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is
an example of a computer, such as server 104 or client 110
in FIG. 1, in which computer-usable program code or
instructions implementing the processes may be located for
the illustrative embodiments. In this illustrative example,
data processing system 200 includes communications fabric
202, which provides communications between processor
unit 204, memory 206, persistent storage 208, communica-
tions unit 210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor
unit 204 may be a set of one or more processors or may be
a multi-processor core, depending on the particular imple-
mentation. Further, processor unit 204 may be implemented
using one or more heterogeneous processor systems in
which a main processor is present with secondary processors
on a single chip. As another illustrative example, processor
unit 204 may be a symmetric multi-processor (SMP) system
containing multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware
that is capable of storing information either on a temporary
basis and/or a permanent basis. Memory 206, in these
examples, may be, for example, a random access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms depending on
the particular implementation. For example, persistent stor-
age 208 may contain one or more components or devices.
For example, persistent storage 208 may be a hard drive, a
flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media
used by persistent storage 208 also may be removable. For
example, a removable hard drive may be used for persistent
storage 208.

Communications unit 210, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-

US 9,462,068 B2

5

vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 208. These
instructions may be loaded into memory 206 for execution
by processor unit 204. The processes of the different
embodiments may be performed by processor unit 204 using
computer implemented instructions, which may be located
in a memory, such as memory 206. These instructions are
referred to as program code, computer-usable program code,
or computer-readable program code that may be read and
executed by a processor in processor unit 204. The program
code in the different embodiments may be embodied on
different physical or tangible computer-readable media, such
as memory 206 or persistent storage 208.

Program code 216 is located in a functional form on
computer-readable media 218 that is selectively removable
and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program
code 216 and computer-readable media 218 form computer
program product 220 in these examples. In one example,
computer-readable media 218 may be in a tangible form,
such as, for example, an optical or magnetic disc that is
inserted or placed into a drive or other device that is part of
persistent storage 208 for transfer onto a storage device,
such as a hard drive that is part of persistent storage 208. In
a tangible form, computer-readable media 218 also may take
the form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory that is connected to data processing
system 200. The tangible form of computer-readable media
218 is also referred to as computer-recordable storage
media. In some instances, computer-recordable media 218
may not be removable.

Alternatively, program code 216 may be transferred to
data processing system 200 from computer-readable media
218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212.
The communications link and/or the connection may be
physical or wireless in the illustrative examples. The com-
puter-readable media also may take the form of non-tangible
media, such as communications links or wireless transmis-
sions containing the program code. The different compo-
nents illustrated for data processing system 200 are not
meant to provide architectural limitations to the manner in
which different embodiments may be implemented. The
different illustrative embodiments may be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
200. Other components shown in FIG. 2 can be varied from
the illustrative examples shown. As one example, a storage
device in data processing system 200 is any hardware
apparatus that may store data. Memory 206, persistent
storage 208, and computer-readable media 218 are examples
of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using
any suitable type of architecture that provides for a transfer
of data between different components or devices attached to

20

30

35

40

45

55

6

the bus system. Additionally, a communications unit may
include one or more devices used to transmit and receive
data, such as a modem or a network adapter. Further, a
memory may be, for example, memory 206 or a cache such
as found in an interface and memory controller hub that may
be present in communications fabric 202.

Computer program code for carrying out operations of the
disclosed subject matter may be written in any combination
of'one or more programming languages, including an object-
oriented programming language such as Java™, Smalltalk,
C++, C#, Objective-C, or the like, and conventional proce-
dural programming languages. Program code may be written
in interpreted languages, such as Python. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly
on the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). The techniques herein may also be implemented
in non-traditional IP networks.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-2. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the disclosed subject matter.

As will be seen, the techniques described herein may
operate in conjunction within the standard client-server
paradigm such as illustrated in FIG. 1 in which client
machines communicate with an Internet-accessible Web-
based portal executing on a set of one or more machines.
End users operate Internet-connectable devices (e.g., desk-
top computers, notebook computers, Internet-enabled
mobile devices, or the like) that are capable of accessing and
interacting with the portal. Typically, each client or server
machine is a data processing system such as illustrated in
FIG. 2 comprising hardware and software, and these entities
communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any
other communications medium or link. A data processing
system typically includes one or more processors, an oper-
ating system, one or more applications, and one or more
utilities. The applications on the data processing system
provide native support for Web services including, without
limitation, support for HTTP, SOAP, XML, WSDL, UDDI,
and WSFL, among others. Information regarding SOAP,
WSDL, UDDI and WSFL is available from the World Wide
Web Consortium (W3C), which is responsible for develop-
ing and maintaining these standards; further information
regarding HTTP and XML is available from Internet Engi-
neering Task Force (IETF). Familiarity with these standards
is presumed.

By way of additional background, as used herein an
“assertion” provides indirect evidence of some action.
Assertions may provide indirect evidence of identity,
authentication, attributes, authorization decisions, or other
information and/or operations. An authentication assertion
provides indirect evidence of authentication by an entity that
is not the authentication service but that listened to the

US 9,462,068 B2

7

authentication service. As is known in the art, a Security
Assertion Markup Language (SAML) assertion is an
example of a possible assertion format that may be used with
the present invention. SAML has been promulgated by the
Organization for the Advancement of Structured Informa-
tion Standards (OASIS), which is a non-profit, global con-
sortium. SAML is described in “Assertions and Protocol for
the OASIS Security Assertion Markup Language (SAML)”,
Committee Specification 01, May 31, 2012, as follows.

The Security Assertion Markup Language (SAML) is an
XML-based framework for exchanging security informa-
tion. This security information is expressed in the form of
assertions about subjects, where a subject is an entity (either
human or computer) that has an identity in some security
domain. A typical example of a subject is a person, identified
by his or her email address in a particular Internet DNS
domain. Assertions can convey information about authenti-
cation acts performed by subjects, attributes of subjects, and
authorization decisions about whether subjects are allowed
to access certain resources. Assertions are represented as
XML constructs and have a nested structure, whereby a
single assertion might contain several different internal
statements about authentication, authorization, and attri-
butes. Note that assertions containing authentication state-
ments merely describe acts of authentication that happened
previously. Assertions are issued by SAML authorities,
namely, authentication authorities, attribute authorities, and
policy decision points. SAML defines a protocol by which
clients can request assertions from SAML authorities and get
a response from them. This protocol, consisting of XML-
based request and response message formats, can be bound
to many different underlying communications and transport
protocols; SAML currently defines one binding, to SOAP
over HI'TP. SAML authorities can use various sources of
information, such as external policy stores and assertions
that were received as input in requests, in creating their
responses. Thus, while clients always consume assertions,
SAML authorities can be both producers and consumers of
assertions.

The SAML specification states that an assertion is a
package of information that supplies one or more statements
made by an issuer. SAML allows issuers to make three
different kinds of assertion statements: authentication, in
which the specified subject was authenticated by a particular
means at a particular time; authorization, in which a request
to allow the specified subject to access the specified resource
has been granted or denied; and attribute, in which the
specified subject is associated with the supplied attributes.

Authentication is the process of validating a set of cre-
dentials that are provided by a user or on behalf of a user.
Authentication is accomplished by verifying something that
a user knows, something that a user has, or something that
the user is, i.e. some physical characteristic about the user.
Something that a user knows may include a shared secret,
such as a user’s password, or by verifying something that is
known only to a particular user, such as a user’s crypto-
graphic key. Something that a user has may include a
smartcard or hardware token. Some physical characteristic
about the user might include a biometric input, such as a
fingerprint or a retinal map. It should be noted that a user is
typically, but not necessarily, a natural person; a user could
be a machine, computing device, or other type of data
processing system that uses a computational resource. It
should also be noted that a user typically but not necessarily
possesses a single unique identifier; in some scenarios,
multiple unique identifiers may be associated with a single
user.

10

15

20

25

30

35

40

45

50

55

60

65

8

An authentication credential is a set of challenge/response
information that is used in various authentication protocols.
For example, a username and password combination is the
most familiar form of authentication credentials. Other
forms of authentication credential may include various
forms of challenge/response information, Public Key Infra-
structure (PKI) certificates, smartcards, biometrics, and so
forth. An authentication credential is differentiated from an
authentication assertion: an authentication credential is pre-
sented by a user as part of an authentication protocol
sequence with an authentication server or service, and an
authentication assertion is a statement about the successful
presentation and validation of a user’s authentication cre-
dentials, subsequently transferred between entities when
necessary.

Cloud Computing Model

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models, all as
more particularly described and defined in “Draft NIST
Working Definition of Cloud Computing” by Peter Mell and
Tim Grance, dated Oct. 7, 2009.

In particular, the following are typical Characteristics:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

The Service Models typically are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or

US 9,462,068 B2

9

even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

The Deployment Models typically are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party, and it may be on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may be on-premises
or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service-oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. A representative cloud computing node is as illus-
trated in FIG. 2 above. In particular, in a cloud computing
node there is a computer system/server, which is operational
with numerous other general purpose or special purpose
computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
computer system/server include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like. Computer
system/server may be described in the general context of
computer system-executable instructions, such as program
modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform
particular tasks or implement particular abstract data types.
Computer system/server may be practiced in distributed
cloud computing environments where tasks are performed

10

15

20

25

30

35

40

45

50

55

60

65

10

by remote processing devices that are linked through a
communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

Referring now to FIG. 3, by way of additional back-
ground, a set of functional abstraction layers provided by a
cloud computing environment is shown. It should be under-
stood in advance that the components, layers, and functions
shown in FIG. 3 are intended to be illustrative only and
embodiments of the invention are not limited thereto. As
depicted, the following layers and corresponding functions
are provided:

Hardware and software layer 300 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide)

Virtualization layer 302 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 304 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 306 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and, according to this disclosure, a
cross-domain inactivity tracking service.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
disclosed subject matter are capable of being implemented
in conjunction with any other type of computing environ-
ment now known or later developed.

US 9,462,068 B2

11

Thus, a representative cloud computing environment has
a set of high level functional components that include a front
end identity manager, a business support services (BSS)
function component, an operational support services (OSS)
function component, and the compute cloud component. The
identity manager is responsible for interfacing with request-
ing clients to provide identity management, and this com-
ponent may be implemented with one or more known
systems, such as the Tivoli Federated Identity Manager
(TFIM) that is available from IBM Corporation, of Armonk,
N.Y. In appropriate circumstances TFIM may be used to
provide federated single sign-on (F-SSO) to other cloud
components. The business support services component pro-
vides certain administrative functions, such as billing sup-
port. The operational support services component is used to
provide provisioning and management of the other cloud
components, such as virtual machine (VM) instances. The
cloud component represents the main computational
resources, which are typically a plurality of virtual machine
instances that are used to execute a target application that is
being made available for access via the cloud. One or more
databases are used to store directory, log, and other working
data. All of these components (included the front end
identity manager) are located “within” the cloud, but this is
not a requirement. In an alternative embodiment, the identity
manager may be operated externally to the cloud. The
service provider also may be operated externally to the
cloud.

Some clouds are based upon non-traditional IP networks.
Thus, for example, a cloud may be based upon two-tier
CLOS-based networks with special single layer IP routing
using hashes of MAC addresses. The techniques described
herein may be used in such non-traditional clouds.

By way of example only, a representative enterprise
application deployed in the cloud is a client-server applica-
tion such as IBM® SmartCloud® for Social Business (for-
merly LotusLive), which provides a cloud-delivered suite of
technologies that combine web conferencing, messaging,
and collaboration services with social networking capabili-
ties in an easy-to-use web-based environment. As a compo-
nent of IBM® SmartCloud, Notes® provides a full-featured
email, calendaring, contact management, and instant mes-
saging. A user can access the service directly over the
Internet in a number of ways, such as using a web browser,
or a “rich” client application (such as the Notes rich client).
Using this service, an enterprise places in the cloud service
its email, calendar and/or collaboration infrastructure, and a
user uses the Notes client to access his or her email, perform
a calendar operation, or facilitate an online collaboration. In
a representative embodiment, the Notes rich client is Version
8.5.2 or higher.

The above example (using IBM SmartCloud) is merely
representative. The techniques described below are not
limited for use with a particular enterprise application
deployed within the cloud environment.

FIG. 4 illustrates a typical IT infrastructure that supports
virtualization of resources. For purposes of explanation, the
IT datacenter that provides shared (public) resources is the
“provider” and a customer or company that uses these
shared resources to host, store and manage its data and
applications (in all forms) is the “subscriber” (or “customer”
or “tenant”). In FIG. 4, an example virtual machine hosting
environment (alternately referred to herein as a data center
or “cloud”) is illustrated. This environment comprises host
machines (HVs) 402 (e.g., servers or like physical machine
computing devices) connected to a physical datacenter net-
work 404, typically via a hypervisor management VLAN

30

40

45

55

12

406. Although not depicted explicitly, typically the environ-
ment also includes load balancers, network data switches
(e.g., top-of-rack switches), firewalls, and the like. As shown
in FIG. 4, physical servers 402 are each adapted to dynami-
cally provide one or more virtual machines (VMs) 408 using
virtualization technology. Such technology is available com-
mercially, e.g., from VMware® or others. Server virtualiza-
tion is a technique that is well-known in the art. As depicted,
multiple VMs can be placed into a single host machine and
share the host machine’s CPU, memory and other resources,
thereby increasing the utilization of an organization’s data
center. In this environment, tenant applications 410 are
hosted in network appliances 412, and tenant data is stored
in data stores and databases 414. The applications and data
stores are connected to the physical datacenter network 404,
typically via a network management/storage VLAN 416.
Collectively, the virtual machines, applications and tenant
data represent a subscriber-accessible virtualized resource
management domain 405. Through this domain, the sub-
scriber’s employees may access and manage (using various
role-based privileges) virtualized resources they have been
allocated by the provider and that are backed by physical IT
infrastructure. The bottom portion of the infrastructure illus-
trates a provider-accessible management domain 415. This
domain comprises a provider employee management portal
418, the BSS/OSS management functions 420, various iden-
tity and access management functions 422, a security policy
server 424, and management functions 426 to manage the
server images 428. These functions interface to the physical
datacenter network via a management VLAN 430. The
provider’s employees have specialized privileges (and per-
haps specific clients/networks) from which they have access
to the Operational and Business Support Services (OSS/
BSS) that they use to manage the I'T datacenter infrastructure
(e.g., hardware and software installations, configurations,
monitoring, technical support, billing, and the like).
Appliance-Based Inactivity Monitoring

As noted above, user inactivity monitoring is a known
technology. A representative data processing system in
which such inactivity monitoring techniques might be
implemented is a Service Oriented Architecture (SOA)
appliance. SOA middleware appliances accelerate XML and
Web services deployments while extending an existing SOA
infrastructure across an enterprise. The utilization of middle-
ware-purposed hardware and lightweight middleware stacks
provides a secure, consumable packaging for implementing
middleware SOA functions. Representative appliances
include, without limitation, the DataPower® accelerator
devices available from IBM of Armonk, N.Y., USA. A
representative appliance of this type provides common XML
message transformation, XMIL processing, integration,
MQ/HTTP/FTP connectivity, transport mediation, and rout-
ing and security functions. Typically, the appliance is con-
figured using a native web-based graphic user interface
(WebGUI), such as a web browser. In a typical use case, the
user also is responsible for appliance maintenance, such as
to manually retrieve, back-up, and archive configuration.

Appliances of this type provide inactivity monitoring. In
particular, techniques for web-based application logout typi-
cally set a logout timer, warn the user of an impending
logout, and then delete the user’s session on the appliance.
Such devices have also been enhanced to provide a secure,
layered logout, wherein each of a set of management objects
associated with the data processing system are categorized
into one or more security levels, with each security level
having an associated view status and an associated security
classification that, preferably, is event-based. Thus, a repre-

US 9,462,068 B2

13

sentative security level has an associated security classifi-
cation that is triggered upon occurrence of one or more
events. Upon occurrence of the event (or events, as the case
may be), the security classification is “reached.” Each status
is independently configurable, and each associated security
classification is independently configurable. Each security
level preferably represents security sensitivity, and an object
is categorized into a security level based on the sensitivity of
what the object represents. Once the objects are categorized
into the security levels, the inactivity timeout are used to
control what objects are available to the user (and/or what
actions can be taken with respect thereto) as events associ-
ated with the security classifications occur. By layering the
security levels and controlling what objects are available to
the user or what can be done with those objects, more
nuanced logout strategies can be implemented.
Cross-Domain Inactivity Tracking for Integrated Web Appli-
cations

With the above as background, the subject matter of this
disclosure is now described. According to this disclosure, a
cross-domain inactivity tracking mechanism provides a way
to track inactivity period(s) across a set of services to which
a user is logged-into across multiple cloud-based sub-do-
mains, and to enable the user to remain logged into a first
service for which an inactivity timer has been exceeded
based on the user’s activity with respect to at least one
second service at which the user remains active. The cross-
domain inactivity tracking mechanism according to this
disclosure may be added to (executed in) the provider
infrastructure described above with respect to FIG. 3 or FIG.
4. The mechanism may be operated as a service itself that
operates across the multiple domains in the cloud compute
infrastructure.

In general, cross-domain inactivity tracking and manage-
ment are provided in a cloud computing environment in
which it is assumed that a user has authenticated to multiple
cloud services. Each cloud service may enforce its own
inactivity period (e.g., a timeout), and it is assumed that the
inactivity period of at least first and second cloud services
are assumed to be distinct from one another. Typically, an
“inactivity period” is temporal (time-based) in nature, such
that, as time passes from a particular start point, eventually
a timeout is reached (an “inactivity timeout”). While a
time-based monitor is the usual scenario, the inactivity may
also be event-based, such that after a given number of
configurable events, the inactivity trigger is met. For con-
venience, the remainder of this explanation describes the
subject matter in the context of a temporal-based solution.

According to this disclosure, a “master service” has
knowledge of or tracks the cloud service(s) to which a user
is authenticated. The “master service” may be dedicated to
the inactivity monitoring operation of this disclosure, it may
be part of an existing cloud management functionality (e.g.,
BSS, OSS, or other directory service), or it may be an
extension or adjunct to some other cloud function, operation
or mechanism. In operation, when the master service
receives an indication that the authenticated user is attempt-
ing to take an action at a first cloud service despite an
activity timeout there, the master service issues a status
request to at least the second cloud service to determine
whether the user is still active at the second cloud service
(despite its different inactivity period). If the user is still
active at the second cloud service, the master service pro-
vides a response back to the first cloud service, selectively
overriding (re-setting) the activity timeout at the first cloud
service to permit the user action to take place.

30

35

40

45

50

55

14

Thus, and as one of skill in the art will fully appreciate,
in this approach inactivity is only checked (by the master
service) on an on-needed basis, which enables the solution
to scale for use by many cloud services simultaneously
without impacting performance.

FIG. 5 illustrates a representative embodiment of a cross-
domain inactivity tracking mechanism. As seen in FIG. 5,
the mechanism comprises a master service 500, and a set of
inactivity trackers 502a-n operating across sub-domains of
the cloud compute infrastructures. The inactivity tracker 502
may comprise part of an existing local tracking mechanism,
such as described above, or it may be a standalone func-
tionality that facilitates the operations described herein. As
noted above, a particular inactivity tracker 502 may have its
own inactivity protocol, and it may operate with local
mechanisms (hardware, processes, program interfaces, data-
bases, data structures, and the like). A particular cloud
service 504 may have or may operate its own associated
inactivity tracker, and the inactivity tracker tracks inactivity
period(s) internally (locally) to that cloud service. Thus, in
the example scenario, cloud service 504q has an inactivity
tracker 502aq associated therewith, cloud service 5045 has an
inactivity tracker 5045 associated therewith, and so forth.
This is not a limitation, as cloud services may share a
particular inactivity tracker, or a particular cloud service
may have multiple such inactivity trackers. The master
service 500 has the capability to call out to each of the
inactivity trackers 502 and request the activity (or inactivity)
status of a particular user. Any suitable request-response
protocol, such as HTTP, HTTPS, an application program-
ming interface (API) call, a call using other REST-based
protocols, or the like, may be used for this purpose. To that
end, the master service 500 includes or has access to a
database (or other data structure) 506 that stores information
to track what cloud service(s) to which a particular user is
authenticated. The master service thus knows or can ascer-
tain the services to which a user is authenticated, and also the
user’s inactivity status with respect to each such cloud-based
service.

In operation, when a particular service (e.g., service 5045,
having local inactivity tracker 5025) to which the user
desires to take an action determines that the user’s action is
outside (beyond) an inactivity window (in other words, that
some relevant inactivity timeout has occurred), that service
(recognizing that the local inactivity timeout has occurred)
makes a call to the master service 500. The master service
500 receives the request from the service (in this example,
service 504b), and master service 500 then examines its
local database to identify one or more of the other cloud
services (e.g., 504a) to which the user is then (or has been)
authenticated. The master service 500 then issues a “status”
request to each such identified cloud service(s) that it has
identified to determine whether the requested cloud service
considers the user to be currently active (or inactive) with
respect to that service. Thus, in this example, if the user is
inactive with respect to service 5044 that receives the
original user request, the master service 500 sends the
status request to one or more of the other cloud services
504a, 504c, and so forth. Depending on the response
or response(s) then received from the identified cloud ser-
vice(s), the master service 500 may then take an action to
override the original inactivity timeout.

As one embodiment, as long as any positive response is
received from any of the other cloud services that indicates
the user is still active (within a particular cloud service), then
the master service 500 provides a response back to the
original requesting service 5045 indicating that the user is

US 9,462,068 B2

15

active. In so doing, the user’s desired action at the service
5045 is then permitted. How this permission is effected at
the requesting service 5045 will depend on the nature of the
user’s original request, but typically the response from the
master service serves to override (and thus re-set) the
inactivity timeout at service 5045 (i.e., set it back to its
initiation time). This override has the effect of making the
user appear as if he or she is still active at that service
(despite the earlier inactivity timeout).

In an alternative embodiment, more than one positive
response is required to be received before the master service
500 overrides the original timeout that occurred in service
504b. In still another embodiment, whether or not the
original timeout is overridden may depend on other factors,
such as relative time differences, time-of-day, the identity of
the responding cloud service(s), the nature of the response(s)
from the responding cloud services, or other configurable
criteria.

Generalizing, the master service has knowledge of or
tracks the cloud service(s) to which a user is authenticated.
Each cloud service may enforce its own inactivity period,
and the inactivity period of at least first and second cloud
services are assumed to be distinct from one another. When
the master service receives an indication that the authenti-
cated user is attempting to take an action at a first cloud
service despite an activity timeout, the master service issues
a status request to one or more other cloud services (includ-
ing the second cloud service) to which the user has been
authenticated to determine whether the user is still active at
any such other cloud service(s). If the user is still active at
any such cloud service, the master service provides a
response to the indication, selectively overriding the activity
timeout at the first cloud service to permit the action.

In effect, the master service tracks inactivity period(s)
across a set of services in sub-domains to which it (the
service) knows the user to be authenticated, and it operates
to keep the user logged into one or more other cloud services
even if the inactivity for a cloud service exceeds some
specified limit. In this manner, the user is not required to
re-authenticate, let alone repeatedly, as he or she continues
to remain active, at least somewhere in the cloud. In other
words, as the end user navigates across the domains in the
cloud, a prior authentication can remain active with respect
to multiple cloud services despite inactivity timeout(s) at
individual ones of those services. The master service pro-
vides this functionality without requiring specialized track-
ing cookies or that the individual services actively ping the
master (central) service.

FIG. 6 illustrates a concrete example scenario with a
master service that provides and end user single-sign on
(SSO) to a pair of cloud services, service A, and service B.
In this example, it is assumed that the inactivity time across
the system for both of the services is the same (e.g., 15
minutes). At step (1), at access time t=0, the user authenti-
cates to service A, which redirects the user to the master
service for SSO before creating a session in service A. At
step (2), and at time=0, the user authenticates to service B,
which redirects the user to the master service for SSO before
a session in service B. Following SSO, the user now has a
session with service A, as well as a session with service B.
At step (3), which occurs ten (10) minutes into the active
session, the user makes a service request to service A.
Because no inactivity timeout has occurred (i.e., the session
is still active there), the user receives a response immedi-
ately. At step (4), however, the user makes an access request
to service B but, by this time (t=20 minutes), the inactivity
timeout has occurred. Thus, according to this disclosure, at

30

40

45

16

step (4a), service B makes a request to the master service to
determine whether the user is still active elsewhere. The
master service responds to this request by identifying service
A as one of the other services to which the user is authen-
ticated. Then, at step (4b), the master service sends a status
request (the inactivity check) to service A. More generally,
the master service queries each of the identified cloud
services to determine whether the user is active there (i.e.,
whether the inactivity period has lapsed there). In one
implementation, the master service calls an application
programming interface (API) into the service and queries for
the activity status at the remote service. Any suitable
request-response protocol may be used as well. In this
example, the user still appears to be active at service A
because of the user’s prior activity there that occurred just
ten minutes earlier (step (3) above). Accordingly, the status
check returns positive. As a result, at step (4c), the master
service issues to service B an activity response (as true),
indicating that the user is still active. At step (4d), service B
resets the inactive time for the user and responds to the
user’s request to service B. This completes the processing

Preferably, the master service caches responses (e.g.,
“service A reported that the user is active as of ten minutes
ago”) so that the service need not re-issue multiple status
requests if it receives another call (to check for status) within
the time period before the inactivity threshold (in this
example, 15 minutes) is actually reached.

The information about what services the user is authen-
ticated to may be retained in a data store, or in a data
structure, such as a cookie, that may be passed in the
request-response processing flow.

The individual cloud services may be quite varied, and
they need not be part of the same application suite. One
cloud service may be SaaS-based, while yet another may be
PaaS-based, while still another may be laaS-based.

The technique described herein provide significant advan-
tages over the prior art. The approach is highly efficient and
scalable, as it obviates communications between the cloud
services and the master except as may be needed to deter-
mine whether a user is active. There is no requirement to
instantiate or maintain (updated) a cookie that tracks inac-
tivity across individual services, or to otherwise maintain
inactivity state data centrally. Each cloud service operates to
track inactivity locally to that service, and all that is required
is that the master service knows the identity of the service(s)
to which the user is authenticated; as needed, the master
service confirms a user’s activity status by obtaining the
status of the user with respect to one or more other cloud
services. Based on the response information, the master
service overrides an inactivity timeout to enable a desired
user action. The approach scales as additional cloud services
are provided, irrespective of the inactivity configuration or
protocol that is enforced locally.

As has been described, the functionality described above
may be implemented as a standalone approach, e.g., a
software-based function executed by a processor, or it may
be available as a managed service (including as a web
service via a SOAP/XML interface). The particular hard-
ware and software implementation details described herein
are merely for illustrative purposes are not meant to limit the
scope of the described subject matter.

More generally, computing devices within the context of
the disclosed subject matter are each a data processing
system (such as shown in FIG. 2) comprising hardware and
software, and these entities communicate with one another
over a network, such as the Internet, an intranet, an extranet,
a private network, or any other communications medium or

US 9,462,068 B2

17

link. The applications on the data processing system provide
native support for Web and other known services and
protocols including, without limitation, support for HTTP,
FTP, SMTP, SOAP, XML, WSDL, UDDI, and WSFL,
among others. Information regarding SOAP, WSDL, UDDI
and WSFL is available from the World Wide Web Consor-
tium (W3C), which is responsible for developing and main-
taining these standards; further information regarding HTTP,
FTP, SMTP and XML is available from Internet Engineering
Task Force (IETF). Familiarity with these known standards
and protocols is presumed.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred
embodiment, the inactivity tracking and management func-
tionality is implemented in software, which includes but is
not limited to firmware, resident software, microcode, and
the like. Furthermore, the inactivity tracking and related
functions can take the form of a computer program product
accessible from a computer-usable or computer-readable
non-transitory medium providing program code for use by
or in connection with a computer or any instruction execu-
tion system. For the purposes of this description, a com-
puter-usable or computer readable medium can be any
apparatus that can contain or store the program for use by or
in connection with the instruction execution system, appa-
ratus, or device. The medium can be an electronic, magnetic,
optical, electromagnetic, infrared, or a semiconductor sys-
tem (or apparatus or device). Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD. Storage devices may include removable media,
such as SD cards. The computer-readable medium is a
tangible, non-transitory item. Any of these devices can be
used to store the authentication or other status information
described above.

Any cloud datacenter resource may host an inactivity
tracking component as described herein.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those instructions or code
may be stored in a computer readable storage medium in a
data processing system after being downloaded over a
network from a remote data processing system. Or, those
instructions or code may be stored in a computer readable
storage medium in a server data processing system and
adapted to be downloaded over a network to a remote data
processing system for use in a computer readable storage
medium within the remote system.

In a representative embodiment, the inactivity tracking
components are implemented in a special purpose comput-
ing platform, preferably in software executed by one or more
processors. The software is maintained in one or more data
stores or memories associated with the one or more proces-
sors, and the software may be implemented as one or more
computer programs. Collectively, this special-purpose hard-
ware and software comprises the functionality described
above.

Further, the cross-domain inactivity tracking functionality
provided herein may be implemented as an adjunct or
extension to an existing cloud compute management solu-
tion.

10

20

25

30

35

40

45

50

55

60

o

5

18

The techniques described herein may be used in any
virtual client-server environments.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

The techniques herein are applicable to any distributed
web application that comprises multiple components (e.g.,
in different domains) that do not allow for simple inactivity
tracking in a single location. Thus, as used herein, a cloud
computing infrastructure or a cloud service should be con-
strued to include a distributed web application of this type.

Having described our invention, what we now claim is as
follows:

1. A method of inactivity tracking and management in a
cloud computing infrastructure, wherein information about a
set of cloud services to which a user is authenticated is
maintained within the infrastructure, comprising:

receiving an indication that the user has attempted to take

an action at a first cloud service following timeout of an
inactivity period there;

responsive to receiving the indication, identifying, from

the information, a second cloud service as a service to
which the user has previously authenticated and may
still be active;

responsive to identifying the second cloud service, que-

rying, using software executing in a hardware element,
the second cloud service to determine, based on an
inactivity period at the second cloud service, whether
the user is indicated to be still active at the second cloud
service; and

when a response is received indicating that the user is

indicated to be still active at the second cloud service,
issuing a reply to the indication, wherein the reply
re-sets the inactivity period at the first cloud service,
thereby enabling the user to take the action.

2. The method as described in claim 1 wherein an
inactivity period at the first cloud service differs from an
inactivity period at the second cloud service.

3. The method as described in claim 1 further including:

querying at least a third cloud service to which the user

has previously authenticated to determine, based on an
inactivity period at the third cloud service, whether the
user is indicated to be still active at the third cloud
service; and

wherein the reply re-setting the inactivity period at the

first cloud service is issued if a response is received
indicating that the user is indicated to be still active at
either the second cloud service or at the third cloud
service.

4. The method as described in claim 1 further including
caching for re-use the response received as a result of the
querying of the second cloud service.

5. The method as described in claim 1 wherein the
information is maintained in one of: a data store, a cookie.

US 9,462,068 B2

19

6. The method as described in claim 1 wherein the user
authenticates to the first and second cloud services using
single sign-on.

7. An apparatus, comprising:

a processor;

computer memory holding computer program instructions

that when executed by the processor perform a method
of inactivity tracking and management in a cloud
computing infrastructure, wherein information about a
set of cloud services to which a user is authenticated is
maintained within the infrastructure, the computer pro-
gram instructions comprising:
program code to receive an indication that the user has
attempted to take an action at a first cloud service
following timeout of an inactivity period there;
program code responsive to receipt of the indication to
identify, from the information, a second cloud ser-
vice as a service to which the user has previously
authenticated and may still be active;
program code responsive to identification of the second
cloud service to query the second cloud service to
determine, based on an inactivity period at the sec-
ond cloud service, whether the user is indicated to be
still active at the second cloud service; and
program code operative when a response is received
indicating that the user is indicated to be still active
at the second cloud service, to issue a reply to the
indication, wherein the reply re-sets the inactivity
period at the first cloud service, thereby enabling the
user to take the action.

8. The apparatus as described in claim 7 wherein an
inactivity period at the first cloud service differs from an
inactivity period at the second cloud service.

9. The apparatus as described in claim 7 further including:

program code to query at least a third cloud service to

which the user has previously authenticated to deter-
mine, based on an inactivity period at the third cloud
service, whether the user is indicated to be still active
at the third cloud service;

wherein the reply re-setting the inactivity period at the

first cloud service is issued if a response is received
indicating that the user is indicated to be still active at
either the second cloud service or at the third cloud
service.

10. The apparatus as described in claim 7 further includ-
ing program code to cache for re-use the response received
as a result of the querying of the second cloud service.

11. The apparatus as described in claim 7 further includ-
ing a data store in which the information is maintained.

12. The apparatus as described in claim 7 further includ-
ing an authentication mechanism to authenticate the user to
the first and second cloud services using single sign-on.

13. A computer program product in a non-transitory
computer readable medium for use in a data processing

10

15

20

25

35

40

45

50

20

system, the computer program product holding computer
program instructions which, when executed by the data
processing system, perform a method of inactivity tracking
and management in a cloud computing infrastructure,
wherein information about a set of cloud services to which
a user is authenticated is maintained within the infrastruc-
ture, the computer program instructions comprising:
program code to receive an indication that the user has
attempted to take an action at a first cloud service
following timeout of an inactivity period there;
program code responsive to receipt of the indication to
identify, from the information, a second cloud service
as a service to which the user has previously authen-
ticated and may still be active;

program code responsive to identification of the second

cloud service to query the second cloud service to
determine, based on an inactivity period at the second
cloud service, whether the user is indicated to be still
active at the second cloud service; and

program code operative when a response is received

indicating that the user is indicated to be still active at
the second cloud service, to issue a reply to the indi-
cation, wherein the reply re-sets the inactivity period at
the first cloud service, thereby enabling the user to take
the action.

14. The computer program product as described in claim
13 wherein an inactivity period at the first cloud service
differs from an inactivity period at the second cloud service.

15. The computer program product as described in claim
13 further including:

program code to query at least a third cloud service to

which the user has previously authenticated to deter-
mine, based on an inactivity period at the third cloud
service, whether the user is indicated to be still active
at the third cloud service;

wherein the reply re-setting the inactivity period at the

first cloud service is issued if a response is received
indicating that the user is indicated to be still active at
either the second cloud service or at the third cloud
service.

16. The computer program product as described in claim
13 further including program code to cache for re-use the
response received as a result of the querying of the second
cloud service.

17. The computer program product as described in claim
13 further including a data store in which the information is
maintained.

18. The computer program product as described in claim
13 further including an authentication mechanism to authen-
ticate the user to the first and second cloud services using
single sign-on.

